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sgof-package Multiple hypothesis testing

Description

This package implements seven different methods for multiple testing problems. The Benjamini and
Hochberg (1995) false discovery rate controlling procedure and its modification for dependent tests
Benjamini and Yekutieli (2001), the method called Binomial SGoF proposed in Carvajal Rodríguez
et al. (2009) and its conservative and bayesian versions called Conservative SGoF (de Uña Álvarez,
2011 ) and Bayesian SGoF (Castro Conde and de Uña Álvarez, 2013 13/06 ), respectively, and
the BB-SGoF (Beta-Binomial SGoF, de Uña Álvarez, 2012 ) and Discrete SGoF (Castro Conde et
al., 2015 ) procedures which are adaptations of SGoF method for possibly correlated tests and for
discrete tests, respectively. Number of rejections, FDR and adjusted p-values are computed among
other things.

Details

This package incorporates the functions BH,BY, SGoF, Binomial.SGoF, Bayesian.SGoF, Discrete.SGoF
and BBSGoF, which call the methods aforementioned. For a complete list of functions, use li-
brary(help="sgof").

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

Maintainer:Irene Castro Conde <irene.castro@uvigo.es>
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Bayesian.SGoF Bayesian SGoF multiple testing procedure

Description

Performs the Bayesian SGoF method (Castro Conde and de Uña Álvarez , 2013 13/06 ) for multiple
hypothesis testing.
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Usage

Bayesian.SGoF(u, alpha = 0.05, gamma = 0.05, P0 = 0.5, a0 = 1, b0 = 1)

Arguments

u A (non-empty) numeric vector of p-values.

alpha Numeric value. The significance level of the metatest.

gamma Numeric value. The p-value threshold, so Bayesian SGoF looks for significance
in the amount of p-values below gamma.

P0 The a priori probability of the null hypothesis.

a0 The first parameter of the a priori beta distribution.

b0 The second parameter of the a priori beta distribution.

Details

Bayesian SGoF (Castro Conde and de Uña Álvarez, 2013 13/06 ) is an adaptation of SGoF method
to the Bayesian paradigm, in which the proportion of p-values falling below gamma is random. This
method has two main steps. First, Bayesian SGoF performs a pre-test at level alpha which de-
cides if the complete null hypothesis should be rejected or not. This Bayesian pre-test is based on
lower bounds of the a posteriori probability of H0 (computed using the default a priori probability
P0=.5, unless otherwise is indicated, and a family of a priori beta distributions located at the null
and indexed by a correlation factor). Second, the number of rejections is computed constructing an
interval for the ’excess of significant cases’, analogously to the SGoF procedure. For this, the poste-
rior distribution of the proportion of p-values falling below gamma is used; this posterior distribution
is calculated on the basis of the default priors a0=b0=1, unless otherwise is indicated. Besides, the
posterior probability that the complete null hypothesis is true is computed using P0, a0 and b0. One
important difference between the frequentist and the Bayesian SGoF is that the Bayesian setting
induces (and hence allows for) a dependence structure among the p-values; this is very interesting
for real problems where correlation is present. From a less philosophical point of view, in practice
Bayesian SGoF may be more conservative than frequentist SGoF, particularly when the number of
tests is small; this is due to the fact that Bayesian testing of point nulls is much more conservative
than its frequentist counterpart and, therefore, the pre-test part of Bayesian SGoF may play a very
important role. Typically the choice alpha=gamma will be used for Bayesian.SGoF; this common
value will be set as one of the usual significance levels (0.001, 0.01, 0.05, 0.1). Note however that
alpha and gamma have different roles. The false discovery rate is estimated by the simple method
proposed by: Dalmasso , Broet , Moreau (2005), by taking n=1 in their formula.

Value

A list containing the following values:

Rejections The number of effects declared by Bayesian SGoF.

FDR The estimated false discovery rate.

Posterior The posterior probability that the complete null hypothesis is true depending on
a0, b0 and P0.

s The amount of p-values falling below gamma.
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s.alpha Critical point at level alpha of the Bayesian pre-test for the complete null de-
pending on P0.

data The original p-values.

alpha The specified significance level for the metatest.

gamma The specified p-value threshold.

P0 The specified a priori probability of the null hypothesis.

a0 The first specified parameter of the a priori beta distribution.

b0 The second specified parameter of the a priori beta distribution.

call The matched call.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Castro Conde I and de Uña Álvarez J (2013). SGoF multitesting method under the Bayesian
paradigm. Discussion Papers in Statistics and Operation Research. Report 13/06. Statistics and
OR Department. University of Vigo.

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

See Also

summary.Bayesian.SGoF

Examples

res<-Bayesian.SGoF(Hedenfalk$x)
summary(res)

BBSGoF BBSGoF multiple testing procedure.

Description

BB-SGoF (de Uña-Álvarez, 2012 ; Castro-Conde and de Uña-Álvarez, in press) is an adaptation
of SGoF method for possibly dependent tests. It is initially assumed that the provided vector of p-
values are correlated in k blocks of equal size (following the given sequence), where k is unknown.

Usage

BBSGoF(u, alpha = 0.05, gamma = 0.05, kmin = 2, kmax = min(length(u)%/%10, 100),
tol = 10, adjusted.pvalues = FALSE, blocks = NA)
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Arguments

u A (non-empty) numeric vector of p-values.

alpha Numeric value. The significance level of the metatest.

gamma Numeric value. The p-value threshold, so SGoF looks for significance in the
amount of p-values below gamma.

kmin Numeric value. The smallest allowed number of blocks of correlated tests.

kmax Numeric value. The largest allowed number of blocks of correlated tests.

tol Numeric value. The tolerance in model fitting (see Details).
adjusted.pvalues

Logical. Default is FALSE. A variable indicating whether to compute the ad-
justed p-values.

blocks Numeric value. The number of existing blocks (see Details).

Details

BB-SGoF (de Uña-Álvarez, 2012 ; Castro-Conde and de Uña-Álvarez, in press) is an adaptation
of SGoF method for possibly dependent tests. It is initially assumed that the provided vector of p-
values are correlated in k blocks of equal size (following the given sequence), where k is unknown.
Inference on the number of existing effects is performed following SGoF principles, but replacing
the binomial distribution for a beta-binomial in the metatest. The beta-binomial distribution is ap-
proximated by the normal distribution; therefore, some caution is needed when the number of tests
is small. It is implicitly assumed that the probability p for a p-value to fall below gamma is random,
following a beta distribution, Beta(a,b); as a consequence, the number of p-values below gamma in
each block generates a random sample from a Betabinomial(p,rho) model, where p=E(p)=a/(a+b)
and rho=Var(p)/p(1-p)=1/(a+b+1) are respectively the mean of p and the within-block correlation
between two indicators of type I(pi<gamma), I(pj<gamma). The parameters are estimated by max-
imum likelihood, and the asymptotic normal distribution of the estimated parameters is used to
perform the inferences (so caution is needed when the number of p-values is small). Since k is
unknown, the method is fitted for each integer ranging from k=kmin to k=kmax, and results for each
k are saved. Automatic (conservative) choice of k is also performed; the automatic k is the value
of k leading to the smallest amount of declared effects (by effects it is meant null hypotheses to
be rejected). The excess of observed significant cases in the beta-binomial metatest are reported
as number of existing effects N. Finally, the effects are identified by considering the smallest N
p-values. BB-SGoF procedure weakly controls the family-wise error rate (FWER) and the false
discovery rate (FDR) at level alpha. That is, the probability of commiting one or more than one
type I errors along the multiple tests is bounded by alpha when all the null hypotheses are true.
SGoF does not control for FWER nor FDR in the presence of effects. It has been quoted that BB-
SGoF provides a good balance between FDR and power, particularly when the number of tests is
large, and the effect level is weak to moderate. It is also known that the number of effects declared
by BB-SGoF is a 100(1-alpha)% lower bound for the true number of existing effects with p-value
below the initial threshold gamma so, interestingly, at probability 1-alpha, the number of false dis-
coveries of BB-SGoF does not exceed the number of false non-discoveries (de Uña-Álvarez, 2012 ).
As for SGoF method, typically the choice alpha=gamma will be used for BB-SGoF; this common
value will be set as one of the usual significance levels (0.001, 0.01, 0.05, 0.1). Note however
that alpha and gamma have different roles. When adjusted.pvalues=TRUE adjusted p-values are
calculated. This are defined in the same spirit of SGoF method, but a guessed value for k must
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be supplied in the argument blocks. Once k is supplied, the adjusted p-value of a given p-value
pi is defined as the smallest alpha0 for which the null hypothesis attached to pi is rejected by BB-
SGoF (based on the given k) with alpha=gamma=alpha0. Actually, BBSGoF function provides an
approximation of these adjusted p-values by restricting alpha0 to the set of original p-values. The
argument tol allows for a stronger (small tol) or weaker (large tol) criterion when removing poor
fits of the beta-binomial model. When the variance of the estimated beta-binomial parameters for a
given k is larger than tol times the median variance along k=kmin,...,kmax, the particular value of
k is discarded. The false discovery rate is estimated by the simple method proposed by: Dalmasso,
Broet, Moreau (2005), by taking n=1 in their formula.

Value

A list containing the following values:

Rejections The number of effects declared by BB-SGoF with automatic k.

FDR The estimated false discovery rate.
Adjusted.pvalues

The adjusted p-values.

effects A vector with the number of effects declared by BB-SGoF for each value of k.

SGoF The number of effects declared by Conservative SGoF.
automatic.blocks

The automatic number of blocks.

deleted.blocks A vector with the values of k for which the model gave a poor fit.

n.blocks A vector with the values of k for which the model fitted well.

p The average ratio of p-values below gamma.

cor A vector with the estimated within-block correlation.

Tarone.pvalues A vector with the p-values of Tarone’s test for no correlation.
Tarone.pvalue.auto

The p-values of Tarone’s test for the automatic k.
beta.parameters

The estimated parameters of the Beta(a,b) model for the automatic k.
betabinomial.parameters

The estimated parameters of the Betabinomial(p,rho) model for the automatic k.
sd.betabinomial.parameters

The standard deviation of the estimated parameters of the Betabinomial(p,rho)
model for the automatic k.

data The original p-values.
adjusted.pvalues

A logical value indicating whether the adjusted p-values have been ordered.

blocks Guessed value of k.

n The length of x.

alpha The specified significance level for the metatest.

gamma The specified p-value threshold.
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kmin The smallest allowed number of blocks of correlated tests.

kmax The largest allowed number of blocks of correlated tests.

tol Tolerance in model fitting (see Details).

call The matched call.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Castro Conde I and de Uña Álvarez J. Power, FDR and conservativeness of BB-SGoF method.
Computational Statistics; Volume 30, Issue 4, pp 1143-1161 DOI: 10.1007/s00180-015-0553-2.

Dalmasso C, Broet P and Moreau T (2005). A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

de Uña Álvarez J (2012). The Beta-Binomial SGoF method for multiple dependent tests. Statistical
Applications in Genetics and Molecular Biology, Vol. 11, Iss. 3, Article 14.

See Also

summary.BBSGoF,plot.BBSGoF,BY

Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-BBSGoF(p)
summary(res) #automatic number of blocks, number of rejected nulls,

#estimated FDR, beta and beta-binomial parameters,
#Tarone test of no correlation

par(mfrow=c(2,2))
plot(res) #Tarone test, within-block correlation, beta density (for automatic k),

#and decision plot (number of rejected nulls)

BH Benjamini-Hochberg (BH) multiple testing procedure

Description

Performs the Benjamini-Hochberg FDR-controlling method for multiple hypothesis testing.

Usage

BH(u, alpha = 0.05)
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Arguments

u A (non-empty) numeric vector of p-values.

alpha Numeric value. The significance level of the test.

Details

The function BH allows for the application of the Benjamini and Hochberg (1995) false discovery
rate controlling procedure. The false discovery rate is estimated by the simple method proposed by:
Dalmasso, Broet, Moreau (2005), by taking n=1 in their formula.

Value

A list containing the following values:

Rejections The number of effects declared by the BH procedure.

FDR The estimated false discovery rate.
Adjusted.pvalues

The adjusted p-values.

data The original p-values.

alpha The specified significance level for the test.

call The matched call.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Benjamini Y and Hochberg Y (1995). Controlling the False Discovery Rate: A Practical and Power-
ful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological)
57, 289–300.

Dalmasso C, Broet P and Moreau T (2005). A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

See Also

plot.BH,summary.BH

Examples

res<-BH(Hedenfalk$x)
summary(res) #number of rejected nulls, estimated FDR
plot(res) #adjusted p-values



10 Binomial.SGoF

Binomial.SGoF Binomial SGoF multiple testing procedure

Description

Performs the Binomial SGoF method (Carvajal Rodríguez et al., 2009 ) for multiple hypothesis
testing.

Usage

Binomial.SGoF(u, alpha = 0.05, gamma = 0.05)

Arguments

u A (non-empty) numeric vector of p-values.

alpha Numeric value. The significance level of the metatest.

gamma Numeric value. The p-value threshold, so Binomial SGoF looks for significance
in the amount of p-values below gamma.

Details

Binomial SGoF starts by counting the amount of p-values below gamma. This amount is compared
to the expected one under the intersection or complete null hypothesis (all the nulls are true) in
a metatest, performed at level alpha. Note that, under the intersection null, the p-values will be
uniformly distributed on the (0,1) interval, so one expects gamma times the length of u p-values
falling below gamma. If the intersection null is accepted, Binomial SGoF reports no effects. If
the intersection null is rejected, the excess of observed significant cases are reported as number
of existing effects N (by effects it is meant null hypotheses to be rejected). Finally, the effects
are identified by considering the smallest N p-values. The only input you need is the set of p-
values. Binomial SGoF procedure weakly controls the family-wise error rate (FWER) and the false
discovery rate (FDR) at level alpha. That is, the probability of committing one or more than one
type I errors along the multiple tests is bounded by alpha when all the null hypotheses are true.
SGoF does not control for FWER nor FDR in the presence of effects. It has been quoted that
Binomial SGoF provides a good balance between FDR and power, particularly when the number of
tests is large, and the effect level is weak to moderate. It is also known that the number of effects
declared by Binomial SGoF is a 100(1-alpha)% lower bound for the true number of existing effects
with p-value below the initial threshold gamma so, interestingly, at probability 1-alpha, the number
of false discoveries of SGoF does not exceed the number of false non-discoveries (de Uña Álvarez,
2012 ). Typically, the choice alpha=gamma will be used; this common value will be set as one of the
usual significance levels (0.001, 0.01, 0.05, 0.1). Note however that alpha and gamma have different
roles. The FDR is estimated by the simple method proposed by: Dalmasso, Broet, Moreau (2005),
by taking n=1 in their formula. The adjusted p-value of a given p-value pi is defined as the smallest
alpha0 for which the null hypothesis attached to pi is rejected by SGoF with alpha=gamma=alpha0.
Actually, Binomial.SGoF function provides these adjusted p-values by restricting alpha0 to the set
of original p-values. Castro-Conde and de Uña-Álvarez (2015) proved that this restriction does not
change the adjusted p-values, while reducing the computational time.
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Value

A list containing the following values:

Rejections The number of effects declared by Binomial SGoF.

FDR The estimated false discovery rate.

Adjusted.pvalues

The adjusted p-values.

data The original p-values.

alpha The specified significance level for the metatest.

gamma The specified p-value threshold.

call The matched call.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Carvajal Rodríguez A, de Uña Álvarez J and Rolán Álvarez E (2009). A new multitest correction
(SGoF) that increases its statistical power when increasing the number of tests. BMC Bioinformatics
10:209.

Castro Conde I and de Uña Álvarez J (2015). Adjusted p-values for SGoF multiple test procedure.
Biometrical Journal, 57(1): 108-122. DOI: 10.1002/bimj.201300238

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

de Uña Álvarez J (2011). On the statistical properties of SGoF multitesting method. Statistical
Applications in Genetics and Molecular Biology, Vol. 10, Iss. 1, Article 18.

See Also

plot.Binomial.SGoF,summary.Binomial.SGoF

Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-Binomial.SGoF(p)
summary(res) #number of rejected nulls, estimated FDR
plot(res) #adjusted p-values
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BY Benjamini-Yekutieli (BY) multiple testing procedure

Description

Performs the Benjamini-Yekutieli FDR-controlling method for multiple hypothesis testing.

Usage

BY(u, alpha = 0.05)

Arguments

u A (non-empty) numeric vector of p-values.

alpha Numeric value. The significance level of the test.

Details

The function BY allows for the application of the Benjamini and Yekutieli (2001) false discovery
rate controlling procedure under dependence assumptions. The false discovery rate is estimated by
the simple method proposed by: Dalmasso, Broet, Moreau (2005), by taking n=1 in their formula.

Value

A list containing the following values:

Rejections The number of effects declared by the BY procedure.

FDR The estimated false discovery rate.
Adjusted.pvalues

The adjusted p-values.

data The original p-values.

alpha The specified significance level for the test.

call The matched call.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Benjamini Y and Yekutieli D (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165–1188.

Dalmasso C, Broet P and Moreau T (2005). A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668
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See Also

plot.BY,summary.BY,BBSGoF

Examples

res<-BY(Hedenfalk$x)
summary(res) #number of rejected nulls, estimated FDR
plot(res) #adjusted p-values

Discrete.SGoF Discrete SGoF multiple testing procedure

Description

Performs the Discrete SGoF method (Castro-Conde, Döhler et al., 2015 ) for multiple hypothesis
testing.

Usage

Discrete.SGoF(u,pCDFlist=NA, K=NA, alpha = 0.05, gamma = 0.05, method=NA,
Discrete=TRUE, Sides=1,...)

Arguments

u A (non-empty) numeric vector of p-values.

pCDFlist A (non-empty) list with the empirical cumulative function of each discrete p-
value.

K Numeric value. The number of continuous tests.

alpha Numeric value. The significance level of the metatest.

gamma Numeric value. The p-value threshold, so Discrete SGoF looks for significance
in the amount of p-values below gamma.

method Method used in the computation of the Poisson binomial quantile. "DFT-CF"
for the exact method and "RNA" for the refined normal approximation.

Discrete Logical. Default is TRUE. A variable indicating if the tests are discrete or con-
tinuous in order to estimate the FDR.

Sides Numeric value indicating if the tests are one-sided (default), Sides=1, or two-
sided, Sides=2 in order to estimate the FDR.

... Other parameters to be passed through to robust.fdr function.
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Details

Discrete SGoF is an extension of Binomial SGoF, based on the generalized or Poisson binomial
distribution (Hong, 2013), which takes into account the discreteness of the p-values. If all the tests
are continuous Discrete SGoF reduces to Binomial SGoF method. In particular, if the p-values
are continuous, the number of rejections given by Discrete.SGoF will be the number of effects
declared by Binomial SGoF. For computing the Poisson Binomial quantile, the poibin package
(Hong, 2019) is used. The exact method ("DFT-CF") and the "RNA" approximation are used by
default to compute the quantile depending on whether the number of tests is smaller than 2000 or
not, respectively (see Hong 2013a for more information). However, the user can specified which of
the two methods to use. Discrete SGoF works the same like Binomial SGoF but it uses the quantiles
of the generalized binomial distribution, as mentioned, instead of the binomial quantiles. Discrete
SGoF maintains the theoretical properties of Binomial SGoF, e.g. weak control of FDR(FWER)
and increasing power when the number of tests increases (de Uña Álvarez, 2011). The FDR is
estimated by using the method proposed by: Pounds and Cheng (2006) using the robust.fdr
function provided by the authors.

Value

A list containing the following values:

Rejections The number of effects declared by Discrete SGoF.

FDR The estimated false discovery rate.

pvalues The original p-values.

alpha The specified significance level for the metatest.

gamma The specified p-value threshold.

K The specified number of continuous tests.

Method The specified method used in the computation of the Poisson binomial quantile.

Discrete The specified type of tests.

Sides Numeric value indicating if the tests are one-sided (default), Sides=1, or two-
sided, Sides=2.

call The matched call.

Author(s)

Irene Castro Conde and Sebastian Döhler

References

Carvajal Rodríguez A, de Uña Álvarez J and Rolán Álvarez E (2009). A new multitest correction
(SGoF) that increases its statistical power when increasing the number of tests. BMC Bioinformatics
10:209.

Castro Conde I, Döhler S and de Uña Álvarez J (2015). An extended sequential goodness-of-fit mul-
tiple testing method for discrete data. Statistical Methods in Medical Research, doi: 10.1177/0962280215597580.

de Uña Álvarez J (2011). On the statistical properties of SGoF multitesting method. Statistical
Applications in Genetics and Molecular Biology, Vol. 10, Iss. 1, Article 18.
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Kihn C, Döhler S, Junge F (2024). DiscreteDatasets: Example Data Sets for Use with Discrete
Statistical Tests. R package version 0.1.1

Hong Y. (2013). On computing the distribution functions for the Poisson binomial distribution.
Computational Statistics and Data Analysis 59, 41-51.

Hong Y. (2019). poibin: The Poisson Binomial Distribution. R package version 1.4

Pounds, S. and C. Cheng (2006). Robust estimation of the false discovery rate. Bioinformatics 22
(16), 1979-1987.

See Also

Binomial.SGoF

Examples

require(DiscreteDatasets)

data(amnesia) #discrete data

AllAdverseCases<-amnesia$OtherAdverseCases + amnesia$AmnesiaCases
A11 <- amnesia$AmnesiaCases
A21 <- sum(AllAdverseCases) - A11
A12 <- AllAdverseCases - A11
A22 <- sum(AllAdverseCases) - sum(amnesia$AmnesiaCases) - A12

A1. <- sum(amnesia$AmnesiaCases)
A2. <- sum(AllAdverseCases) - A1.

n <- A11 + A12
k <- pmin(n,A1.)

pCDFlist <- list()
pvec <- numeric(nrow(amnesia))

## Calculation of the p-values and the p-values CDFs:

for (i in 1:nrow(amnesia))
{

x <- 0:k[i]
pCDFlist[[i]] <- dhyper(x ,A1., A2. ,n[i]) + phyper(x ,A1. ,A2. ,n[i] ,lower.tail = FALSE)
pCDFlist[[i]] <- rev(pCDFlist[[i]])
pvec[i] <- dhyper(A11[i] ,A1. ,A2. ,n[i]) + phyper(A11[i] ,A1. ,A2. ,n[i] ,lower.tail = FALSE)

}

res<-Discrete.SGoF(u=pvec,pCDFlist=pCDFlist,alpha=0.05,gamma=0.05,Discrete=TRUE,Sides=1)
res

#continuous p-values

res2<-Discrete.SGoF(u=Hedenfalk$x,K=3170,Discrete=FALSE, method="DFT-CF",Sides=2)
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res2

Hedenfalk Hedenfalk data

Description

The data include information of the micro array study of hereditary breast cancer of Hedenfalk et
al. (2001). Many cases of hereditary breast cancer are due to mutations in either the BRCA1 or
the BRCA2 gene. The histopathological changes in these cancers are often characteristic of the
mutant gene. They hypothesized that the genes expressed by these two types of tumors are also
distinctive, perhaps allowing to identify cases of hereditary breast cancer on the basis of gene-
expression profiles.

The patients consisted of 23 with BRCA1 mutations, 17 with BRCA2 mutations, 20 with familial
breast cancer, 19 with possibly familial breast cancer and 34 with sporadic breast cancer to deter-
mine whether there are distinctive patterns of global gene expression in these three kinds of tumors.

One of the goals of this study was to find genes differentially expressed between BRCA1- and
BRCA2-mutation positive tumors. Thus, the data included here are p-values obtained from a two-
sample t-test analysis on a subset of 3170 genes, as described in Storey and Tibshirani (2003).

Usage

Hedenfalk

Format

x A numeric vector of 3170 p-values of tests comparing BRCA1 to BRCA2.

References

Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M et al. (2001). Gene-Expression Profiles
in Hereditary Breast Cancer. New England Journal of Medicine 344, 539–548.

Storey JD and Tibshirani R (2003). Statistical significance for genome-wide studies. Proceedings
of the National Academy of Sciences, 100: 9440–9445.

Examples

hist(Hedenfalk$x)
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plot.BBSGoF Plot of a BBSGoF object.

Description

Plot of a BBSGoF object

Usage

## S3 method for class 'BBSGoF'
plot(x, ...)

Arguments

x A BBSGoF object.

... Other parameters to be passed through to plotting functions.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

de Uña Álvarez J (2012). The Beta-Binomial SGoF method for multiple dependent tests. Statistical
Applications in Genetics and Molecular Biology, Vol. 11, Iss. 3, Article 14.

See Also

BBSGoF,summary.BBSGoF

Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-BBSGoF(p)

par(mfrow=c(2,2))
plot(res) #Tarone test, within-block correlation, beta density (for automatic k),

#and decision plot (number of rejected nulls)
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plot.BH Plot of a BH object

Description

Plot of the Adjusted p-values given by the BH method.

Usage

## S3 method for class 'BH'
plot(x, ...)

Arguments

x A BH object.

... Other parameters to be passed through to plotting functions.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Benjamini Y and Hochberg Y (1995). Controlling the False Discovery Rate: A Practical and Power-
ful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological)
57, 289–300.

See Also

BH,summary.BH,SGoF

Examples

res<-BH(Hedenfalk$x)
plot(res)



plot.Binomial.SGoF 19

plot.Binomial.SGoF Plot of a Binomial.SGoF object

Description

Plot the Adjusted p-values given by the Binomial SGoF method.

Usage

## S3 method for class 'Binomial.SGoF'
plot(x, ...)

Arguments

x A Binomial.SGoF object.

... Other parameters to be passed through to plotting functions.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Carvajal Rodríguez A, de Uña Álvarez J and Rolán Álvarez E (2009) A new multitest correction
(Binomial.SGoF) that increases its statistical power when increasing the number of tests. BMC
Bioinformatics 10:209.

Castro Conde I and de Uña Álvarez J (2015). Adjusted p-values for SGoF multiple test procedure.
Biometrical Journal 57(1): 108-122. DOI: 10.1002/bimj.201300238

See Also

Binomial.SGoF,summary.Binomial.SGoF

Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-Binomial.SGoF(p)
plot(res)



20 plot.BY

plot.BY Plot of a BY object

Description

Plot of the Adjusted p-values given by the BY method.

Usage

## S3 method for class 'BY'
plot(x, ...)

Arguments

x A BY object.

... Other parameters to be passed through to plotting functions.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Benjamini Y and Yekutieli D (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165–1188.

See Also

BY,summary.BY

Examples

res<-BY(Hedenfalk$x)
plot(res)
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plot.SGoF Plot of a SGoF object

Description

Plot the Adjusted p-values given by the Conservative SGoF method.

Usage

## S3 method for class 'SGoF'
plot(x, ...)

Arguments

x A SGoF object.

... Other parameters to be passed through to plotting functions.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Castro Conde I and de Uña Álvarez J (2015). Adjusted p-values for SGoF multiple test procedure.
Biometrical Journal; 57(1): 108-122. DOI:DOI:10.1002/bimj.201300238.

de Uña Álvarez J (2011). On the statistical properties of SGoF multitesting method. Statistical
Applications in Genetics and Molecular Biology, Vol. 10, Iss. 1, Article 18.

See Also

SGoF,summary.SGoF

Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-SGoF(p)
plot(res)
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SGoF Conservative SGoF multiple testing procedure

Description

Performs Conservative SGoF method (de Uña Álvarez, 2011 ) for multiple hypothesis testing.

Usage

SGoF(u, alpha = 0.05, gamma = 0.05)

Arguments

u A (non-empty) numeric vector of p-values.

alpha Numeric value. The significance level of the metatest.

gamma Numeric value. The p-value threshold, so Conservative SGoF looks for signifi-
cance in the amount of p-values below gamma.

Details

Conservative SGoF is an asymptotic version (large number of tests) of the Binomial SGoF proce-
dure, where the binomial quantiles are approximated by the normal ones. Besides, the variance of
the number of p-values below gamma is estimated without assuming that all the null hypotheses are
true, which typically results in a more conservative decision (from this the method’s name). When
the number of tests is large, Conservative SGoF and Binomial SGoF report approximately the same
result. This method should no be used when the number of tests is small, because the binomial-
normal approximation will perform poorly. Conservative SGoF method has the main properties
of Binomial SGoF like weak control of the family-wise error rate (FWER) and the false discov-
ery rate (FDR) at level alpha and a good balance between FDR and power, particularly when the
number of tests is large, and the effect level is weak to moderate. See Binomial.SGoF for more
details. Typically, the choice alpha=gamma will be used; this common value will be set as one of
the usual significance levels (0.001, 0.01, 0.05, 0.1). Note however that alpha and gamma have
different roles. The FDR is estimated by the simple method proposed by: Dalmasso, Broet, Moreau
(2005), by taking n=1 in their formula. The adjusted p-value of a given p-value pi is defined as the
smallest alpha0 for which the null hypothesis attached to pi is rejected by Conservative SGoF with
alpha=gamma=alpha0. Actually, Conservative.SGoF function provides these adjusted p-values by
restricting alpha0 to the set of original p-values (Castro Conde and de Uña Álvarez , 2015 ).

Value

A list containing the following values:

Rejections The number of effects declared by SGoF.

FDR The estimated false discovery rate.
Adjusted.pvalues

The adjusted p-values.
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data The original p-values.

alpha The specified significance level for the metatest.

gamma The specified p-value threshold.

call The matched call.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Castro Conde I and de Uña Álvarez J (2015). Adjusted p-values for SGoF multiple test procedure.
Biometrical Journal; 57(1): 108-122. DOI:10.1002/bimj.201300238.

Dalmasso C, Broet P and Moreau T (2005). A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

de Uña-Álvarez J (2011). On the statistical properties of SGoF multitesting method. Statistical
Applications in Genetics and Molecular Biology, Vol. 10, Iss. 1, Article 18.

See Also

summary.SGoF,plot.SGoF

Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-SGoF(p)
summary(res) #number of rejected nulls, estimated FDR
plot(res) #adjusted p-values

summary.Bayesian.SGoF Summary of a Bayesian.SGoF object

Description

Summary of the most important results given by the Bayesian SGoF procedure.

Usage

## S3 method for class 'Bayesian.SGoF'
summary(object, ...)

Arguments

object A Bayesian.SGoF object.

... Additional arguments affecting the summary produced.
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Value

Rejections The number of effects declared by the Bayesian SGoF procedure.

FDR The estimated false discovery rate.

Posterior The posterior probability that the complete null hypothesis is true considering
the non informative election.

s The proportion of p-values falling below gamma.

s.alpha The first integer from 0 to n such that the Bayesian pre-test rejects the complete
null hypothesis.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Castro Conde I and de Uña Álvarez J (2013). SGoF multitesting method under the Bayesian
paradigm. Discussion Papers in Statistics and Operation Research. Report 13/06. Statistics and
OR Department. University of Vigo.

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

See Also

Bayesian.SGoF

Examples

res<-Bayesian.SGoF(Hedenfalk$x)
summary(res)

summary.BBSGoF Summary of a BBSGoF object

Description

Summary of the most important results given by the BBSGoF procedure.

Usage

## S3 method for class 'BBSGoF'
summary(object,...)
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Arguments

object A BBSGoF object.

... Additional arguments affecting the summary produced.

Value

Rejections The number of effects declared by BB-SGoF with automatic k.

FDR The estimated false discovery rate.
Adjusted.pvalues

Table of adjusted p-values falling under gamma.
Tarone.pvalue.auto

The p-values of Tarone’s test for the automatic k.
beta.parameters

The estimated parameters of the Beta(a,b) model for the automatic k.
betabinomial.parameters

The estimated parameters of the Betabinomial(p,ro) model for the automatic k.
sd.betabinomial.parameters

The standard deviation of the estimated parameters of the Betabinomial(p,ro)
model for the automatic k.

automatic.blocks

The automatic number of blocks.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

de Uña Álvarez J (2012). The Beta-Binomial SGoF method for multiple dependent tests. Statistical
Applications in Genetics and Molecular Biology, Vol. 11, Iss. 3, Article 14.

See Also

BBSGoF,plot.BBSGoF

Examples

p<-runif(387)^2 #387 p-values, intersection null violated

res<-BBSGoF(p)
summary(res) #automatic number of blocks, number of rejected nulls,

#estimated FDR, beta and beta-binomial parameters,
#Tarone test of no correlation
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summary.BH Summary of a BH object

Description

Summary of the most important results given by the BH procedure.

Usage

## S3 method for class 'BH'
summary(object, ...)

Arguments

object A BH object.

... Additional arguments affecting the summary produced.

Value

Rejections The number of effects declared by the BH procedure.

FDR The estimated false discovery rate.
Adjusted.pvalues

Table of adjusted p-values falling under alpha.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Benjamini Y and Hochberg Y (1995): Controlling the False Discovery Rate: A Practical and Power-
ful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological)
57, 289–300.

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

See Also

BH,plot.BH

Examples

res<-BH(Hedenfalk$x)
summary(res)
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summary.Binomial.SGoF Summary of a Binomial.SGoF object

Description

Summary of the most important results given by the Binomial SGoF procedure.

Usage

## S3 method for class 'Binomial.SGoF'
summary(object, ...)

Arguments

object A Binomial.SGoF object.

... Additional arguments affecting the summary produced.

Value

Rejections The number of effects declared by the Binomial SGoF procedure .

FDR The estimated false discovery rate.

Adjusted.pvalues

Table of adjusted p-values falling under gamma.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Carvajal Rodríguez A, de Uña Álvarez J and Rolán Álvarez E (2009). A new multitest correction
(Binomial.SGoF) that increases its statistical power when increasing the number of tests. BMC
Bioinformatics 10:209.

Castro Conde I and de Uña Álvarez J (2015). Adjusted p-values for SGoF multiple test procedure.
Biometrical Journal; 57(1): 108-122. DOI: 10.1002/bimj.201300238

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

See Also

Binomial.SGoF,plot.Binomial.SGoF
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Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-Binomial.SGoF(p)
summary(res) #number of rejected nulls, estimated FDR

summary.BY Summary of a BY object

Description

Summary of the most important results given by the BY procedure.

Usage

## S3 method for class 'BY'
summary(object, ...)

Arguments

object A BY object.

... Additional arguments affecting the summary produced.

Value

Rejections The number of effects declared by the BY method.

FDR The estimated false discovery rate.
Adjusted.pvalues

Table of adjusted p-values falling under alpha.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Benjamini Y and Yekutieli D (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165–1188.

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

See Also

BY,plot.BY



summary.SGoF 29

Examples

res<-BY(Hedenfalk$x)
summary(res)

summary.SGoF Summary of a SGoF object

Description

Summary of the most important results given by the Conservative SGoF procedure.

Usage

## S3 method for class 'SGoF'
summary(object, ...)

Arguments

object A SGoF object.

... Additional arguments affecting the summary produced.

Value

Rejections The number of effects declared by SGoF.

FDR The estimated false discovery rate.
Adjusted.pvalues

Table of adjusted p-values falling under gamma.

Author(s)

Irene Castro Conde and Jacobo de Uña Álvarez

References

Castro Conde I and de Uña Álvarez J (2015). Adjusted p-values for SGoF multiple test procedure.
Biometrical Journal; 57(1): 108-122. DOI: 10.1002/bimj.201300238

Dalmasso C, Broet P and Moreau T (2005) A simple procedure for estimating the false discovery
rate. Bioinformatics 21:660–668

de Uña Álvarez J (2011). On the statistical properties of SGoF multitesting method. Statistical
Applications in Genetics and Molecular Biology, Vol. 10, Iss. 1, Article 18.

See Also

SGoF,plot.SGoF
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Examples

p<-runif(387)^2 #387 independent p-values, non-uniform intersection null violated

res<-SGoF(p)
summary(res) #number of rejected nulls, estimated FDR
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